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We examine the structure of nominally wedge-shaped or conical premixed flames, 
of the type that stand a t  the mouth of a slot or Bunsen burner. A hydrodynamic 
analysis, justified for slender flames, accounts for the broad features of the flow field, 
but within a thin zone whose location defines the shape of the flame, heat-conduction, 
species diffusion and chemical reaction must be accounted for. A simple mathematical 
description is possible there in the asymptotic limit of infinite activation energy. Near 
the very extremity of the tip, where the reaction zone is close to the flame axis, this 
elementary description is no longer valid, and the combustion field is characterized 
by a free-boundary problem of Stefan type with nonlinear field equations. The 
numerical treatment of this problem is based on weak solution techniques. 

1. Introduction 
The inner luminous cone of a Bunsen flame is the result of combustion of the 

air/fuel mixture that passes up the tube, and this paper is concerned with the nature 
of the combustion field including details of the gas flow. Such an analysis is justified 
on several accounts. As one of the oldest known examples of stabilized premixed 
combustion, Bunsen flames have long been studied in the laboratory; Lewis & von 
Elbe (1961)  summarize many of the conclusions of such investigations. Most 
importantly, such flames provide one of the simplest examples of a multidimensional 
combustion field, and thus afford a useful vehicle for escaping from one-dimensional 
configurations while at the same time avoiding unphysical assumptions or exclusive 
recourse to numerical computation. 

The equations that we shall investigate are 

( 1 . l a )  

( l . l b )  

1 
L 

p ( 4 . V )  Y = - A Y - B Y e - e / T H ( T - T , ) ,  

p (q  * V )  T = AT + B Y e-eIT H (  T - T, ), 

( 1 . l c )  

Here Y is the mass fraction of the combustible mixture (regarded as a one-component 
entity), T the temperature, p density, q velocity and p pressure. Chemical reaction 
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is modelled by a one-step irreversible process which is proportional to  Y and depends 
on the temperature through an Arrhenius factor with activation energy 8. H is a 
Heaviside step function introduced to  ensure that there is no reaction in the cold 
unburnt mixture a t  the temperature T f  so that T, is a cut-off temperature where 
T, > T,; this is a rational device for resolving the cold-boundary difficulty (Williams 
1965). L is the Lewis number, Pr the Prandtl number and B is a parameter whose 
magnitude is fixed by the precise way in which the equations are non-dimensionalized. 
Suffice i t  to say that the choice (1.1 c) corresponds to  an adiabatic flame speed of 
1 when L = 1 ,  8 +a ; for a detailed discussion of the approximations and scalings 
that lead to the system ( l ) ,  the reader is referred to Buckmaster & Ludford (1982). 

Detailed boundary conditions will be considered in due course, but i t  may be noted 
a t  this time that, roughly speaking, we shall suppose that the unburnt gas lies to  the 
left (x+- a), the burnt gas to the right (x++ a). Thus in a certain sense we have 

Y+Y,, T + q ,  p + l ,  q+qf ,  p+p,=O as %+-a. (1.2) 

Equations (1.1) have often been simplified by using the constant-density approx- 
imation. Then p is set equal to  1 and only the equations for T and Y are considered, 
with q a specified solenoidal velocity field. This severance of the fluid mechanics is 
a very powerful approximation and makes possible, for example, a complete 
discussion of the linear stability of the one-dimensional flame or deflagration wave 
(Sivashinsky 1977). Unrealistic though the approximation might seem, Sivashinsky's 
results are of great physical interest, providing as they do the first convincing 
explanation of cellular flames (Markstein 1964). The approximation can be justified 
if temperature changes throughout the combustion field are small, a necessary 
condition for which is that  the enthalpy liberated by the combustion is small 
compared to the enthalpy of the cold unburnt mixture, and i t  has been discussed from 
that point of view by Matkowsky & Sivashinsky (1979). However, in a typical burner 
flame the temperature can change from, say, 300 O C  on the cold side to  1600 O C  on 
the hot side, and in these circumstances the approximation undoubtedly omits 
important physics. The goal of the present work is to examine flame tips without 
adopting the constant-density model, in contrast to  previous studies of the problem 
(Buckmaster 1979; Sivashinsky 1975). It is true that Sivashinsky (1976) formulated 
the variable-density flame-tip problem in the context of so-called ' slowly varying 
flames ' (SFVs - see Buckmaster & Ludford 1982), but he calculated neither the flow 
field nor the flame shape when the density is allowed to  vary. 

A key to the earlier studies of Buckmaster and Sivashinsky, and an essential 
ingredient of the present one, is the notion that in the limit 8 +a the chemical-reaction 
term in (1 .1 .  a ,  b) can sometimes be replaced by a distribution of Dirac &functions. 
This defines a flame sheet and thus the locus of the flame. There is a continuing 
tendency in the literature to  adopt such a formulation under quite general circum- 
stances, but in fact i t  can only be justified under certain restrictions. Those adopted 
here are that L is close to 1 and T +  Y is close to T,+ &. More precisely, we write 

L-I = i -e- lh,  A = o(i), ( 1 . 3 ~ )  

T+ Y = T,+ y f+B- '#+O(B-2) .  (1 .3b)  
9 then replaces Y as a dependent variable, and outside of the reaction zone we have 

(1.4a, b) 
where T now refers only to  the leading term in an  asymptotic expansion for the 
temperature (it seems unnecessarily cumbersome to use the label To for this variable). 

p(q 'V) T = AT, p (4 .V)  4 = A$+hAT, 
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The relation (1.3b) places restrictions on the allowable boundary conditions. It 
should also be noted that behind the flame, where no reactants remain (i.e. Y = 0), 
(1.3 b )  implies that the temperature is close to the adiabatic flame temperature T f  + &. 

Under the restrictions (1.3), replacement of the reaction terms by a distribution 
of &functions can be formally justified, and leads to the jump conditions 

(1.5a, b )  [dl = 0 = [rl, 

(1.5c, d )  

where n is the normal to the reaction surface directed towards the burnt gas. The 
temperature immediately behind the flame is T f  + & + 8- $(n + 0 )  and is known as 
the flame temperature. 

Jumps in the other variables and their derivatives can be obtained by further 
analysis of the flame sheet structure, or by writing the equations in an orthogonal 
coordinate system locally aligned with the flame sheet and considering the implications 
for a discontinuity. Thus from Charles' Law, 

(1.6a, b )  

From the continuity equation, iqnl = 0. (1 .7 )  

From the tangential (s) component of the momentum equation, 

aq 
iq , l=  0, [g] = 0;  

and, from its normal component, 
J = ipr [g] 

(note that [pqk] = 0). Finally, using continuity again, 

(1.8a, b )  

(1.9) 

(1.10) 

Not all of these conditions have to be explicitly invoked in the subsequent analysis. 

The hydrody~mic limit 
The formulation so far has been on a lengthscale small enough for us to  follow the 
details of the diffusion of heat, mass and vorticity. On a much larger scale these details 
are lost, and, as is well known, a hydrodynamic description is appropriate. This limit 
is formally achieved by writing 

(1.11) 

and then letting D -too. The effect of this singular limiting process on (1.1 a,  b )  depends 
on the relative magnitudes of T and T,. I n  any region where T < T, so that  the 
reaction vanishes identically, the limit equations are 

(q*V')Y = 0 (4-V') T = 0, (1.12a, b )  

(2, y, 2 )  = W', y', 2 ' )  

where 
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It follows that if this region is everywhere penetrated by streamlines from the cold 
unburnt gas far upstream then Y =- yf and T = T f  there. b n  the other hand, if T > T, 
the limiting equations are both 

BYe-*IT = 0, (1.13) 

whence Y Z O .  (1.14) 

In  both of these regions the equations of continuity and state are unaltered by the 
limiting process, but the momentum equation reduces to  Euler’s form, namely 

p(4sV’)q  = - V p .  (1.15) 

Thus the combustion field is divided into two regions, in both of which the governing 
equations are those of an incompressible inviscid fluid, separated by a discontinuity 
across which the temperature and density jump by a prescribed amount. Jumps in 
the other flow variables are constrained by the requirements of mass and momentum 
conservation. Thus if the subscript ’ 1  ’ refers to  the cold scale and ‘ 2 ’  to the hot, we 

(1.16~4 b)  have 

Pi+P1q2,1 = ~ z + ~ z & , ,  Q f =  qn,. (1.16c, d) 

Here Qf is, by definition, the flame speed. This can be calculated by considering the 
structure of the discontinuity using the full equations (1 .1) ,  since in the limit D+co 
this structure is one-dimensional. Analysis in the limit 0+co, with the restriction 
(1.3a), leads to the result (Bush & Fendell 1970) 

Qf = 1.  (1 .17)  

Consider, for example, a simple refraction of a uniform flow (figure 1 a) .  The uniform 

(1.18a, b )  

p2 = T,(Tf+ q ) - I .  (1.18c, d, e )  

A flow of this kind is a fundamental feature of burner flames a t  points sufficiently 
far from the tip. The essential structure of such flames is sketched in figure 2. The 
efflux of unburnt gas from the port is essentially a parallel flow with a parabolic 
distribution in the case of a straight burner, a uniform flow for a nozzle burner. 
Provided that the port diameter is large compared with the flame thickness, the 
characteristic feature of the flame on the large scale is the hydrodynamic discontinuity. 
After refraction by this surface, the streamlines curve until they are once again 
parallel to the axis. On the smaller scale there is structure near the reaction zone 
which, at the tip, is quite complicated. Elsewhere this structure is one-dimensional 
and can be described by seeking a one-dimensional solution of the full equations that 
depends only on n, the distance normal to  the flame sheet. Consider, for example, 
the structure associated with the refraction of figure 1 (a) .  Conditions behind the flame 
sheet are necessarily uniform and so are defined by (1.18) together with 

PI !In, = PZ 4n,2 ql ,  = 

With Qf specified, the conditions (1.16) uniquely connect the states (1) and (2). 

flow downstream is then defined by 

sin0 = U-l, qs, = U+ y f  U-l Tf-l ,  

qy ,  = &[l-  U-2]]tT;1, p2 = - YfT;l, 

T=T,+Y, ,  $ = O  ( n > O ) .  (1,19a, b )  

T = T,+&en, $ = -Anen&, (1 .20a,b)  

Ahead of the flame sheet, elementary analysis yields 

(1.20c,d) 
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FIGURE 1. (a) Simple refraction on the hydrodynamic scale. ( b )  Structure of the refraction. 

FIGURE 2. Burner flame. 

This velocity field is such that qs is a constant (=  U cos8) and the normal flux pqn 
is constant (=  Usin 8 = 1 ) .  Streamlines are sketched in figure 1 ( b ) .  
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2. Slender hydrodynamic flames 
2.1. Plane case 

We now turn to the question of the flow field induced by the presence of a conical 
or wedge-shaped flame. As already noted, provided that the scale of the flame is large 
enough and we are not concerned with the details near the reaction zone or tip, a 
hydrodynamic description will suffice. The complete boundary-value problem, 
allowing for the presence of the burner and possible nonuniform eMux of gas from 
the port, is a formidable one. Consequently we shall be content with a description 
that assumes an unbounded flame which far to the left resembles as closely as possible 
a uniform cone or wedge, with a uniform flow in the cold gas and simple refraction 
a t  the flame front. Moreover we shall assume that the flame is slender (i.e. the wedge 
or cone angle is small), and then the description can plausibly be expected to be valid 
near the apex of a real burner flame. The main goals of the analysis are to find the 
shape of the flame front and to describe the manner in which the refracted streamlines 
turn back to the original direction far downstream. 

The governing equations are 

V ’ . q  = 0, p ( q . V ’ ) q  = - V ’ p ,  (2.1 a,  b )  

where p = 1 in the unburnt gas, T,/(T,+ 3 )  in the burnt gas. If U is a characteristic 
flow velocity, we shall construct an asymptotic solution valid as E + O ,  where 

E = u-1. (2.2) 
E is a measure of the flame slenderness. No real flame can survive the limit U+CO, 
of course, for as U is increased blow-off will eventually occur. But for many burners 
and mixtures fairly large values of U are possible. Lewis & von Elbe (1971, p. 269), 
for example, show a plane flame for which E z 0.1. For this reason we believe that the 
limit is worth exploring. 

The plane case will be considered in detail, followed by an outline of the 
corresponding results for the axisymmetric problem. 

It is necessary to consider the flows on both the hot and cold sides of the flame, 
joining them with the jump conditions across the flame front. In  this connection it 
should be noted that for large values of U the formulae (1.18 b,  c )  reduce to 

(2.3a, b) 

That is, the flame front does not affect the 2-component of velocity but adds a 
constant to the y-component. 

Consider first the cold side. Defining new variables by 

(2.4a, b, c )  

the governing equations become 

In addition, the condition that the flow upstream of the flame front is irrotational 
is 

These equations have general validity for flow inside a slender region. 
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Consistent with the upstream conditions we further write 

(u ,v )  = (l,O)+s(ul,v,)+ ... , 
p=Epl+  ..., 

(2.7 a )  

(2.7b) 

whence u1 = u1(f;L Pl = - % ( f ; ) ,  a1 = - u X ) V .  (2.8a, b ,  c)  

An important feature of this flow is that  it is parallel to order O ( E ) .  Then, if the upper 
surface of the flame front is described by 

(2.9) 

Fh = - 1 ,  (2.10) 

V = F(f;) - 4(0, 
the condition that the flame speed equals unity leads to 

and to leading order the flame is a uniform wedge: 

F, = - 6 .  
Consider now the burnt gas. It is appropriate to seek a solution of the form 

(2.11a) 

p = EG+ .'_, (2.11 b )  

with independent variables ( ( 3  4 = 4x ' ,  y'), (2.114 

whence (2.12a, b) 

The jump conditions at the Aame front connect this and the solution on the cold side. 
Indeed, 

Y f  
Tf 

pl = u1([), PI = -u1(f;), 01 = - (U = -€[, f; < 0). ( 2 . 1 3 ~ ,  b, C )  

Moreover, symmetry implies that 

w , = O  ( u = O ,  f ; > O ) .  (2.14) 

Consider the potential solution 

1 Y ,  1 Y ,  
wlp = -#-, 

n T ,  Z T ,  
,ulp = --lnr-, (2.15a, b) 

where (r, #) are polar coordinates in the (6, v)-plane. (In this section, which deals 
exclusively with hydrodynamics, there can be no confusion with the # introduced 
in (1.3).) This satisfies the condition (2.14), and since a t  the flame front # is within 
O(E)  of 7c it also satisfies (2 .13~) .  At the flame front 

(2.16) 

so that if ul(f;) is given by the same expression this provides a complete solution. 
However, there is no obvious reason why a shear flow cannot be added to this 
potential field, 

where 

12 

(2.17a, b)  
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X’ 

FIGURE 3. Plane hydrodynamic tip drawn for E = tan loo, ( B / x )  Y,/q = 0.1. 

For most choices of u1 the quantity apl/av will be O ( ~ / E ) ,  which is not consistent with 
the linearization leading to (2.12). However, this difficulty does not arise if u1 is a 
multiple of In ( - 6 ) .  As a special case, if u1 = 0 then 

so that & sin4 
p, = ,ulp+plr = -ln-. 

RTf E 
(2.19) 

This has an advantage over the potential solution in that it eliminates the singularity 
in the far field; it  has its own pathology, however, namely a wake-like singularity 
on the positive 6-axis. There is no immediate way of choosing between (2.15) and 
(2.19) by local arguments, but fortunately the ambiguity does not affect the value 
of o, so that it is possible to draw the streamlines (figure 3). 

There is no contradiction between this ambiguity and the well-known relation 
between flame curvature and generated vorticity (Emmons 1958). Indeed, the 
vorticity behind the flame is given by the formula (when 8, is small) 

where 8, is the angle between streamline and flame on the cold side, and s is arclength 
measured along the flame. Both 8, and the vorticity considered here are O(e) ,  
corresponding to a (small) flame curvature 

“(%) d(ss) E = O(s2). 

It should be noted that the curvature of the streamlines downstream of the flame 
arises as a natural consequence of the flame geometry, and does not require any 
additional agency such as gravity. I n  this connection we disagree with the remark 
of Lewis & von Elbe (1961, p. 271) that  ‘ In  a slot burner.. . [that]. . . is  upright, 
the . . . streams are forced together again downstream by gravitational buoyancy, and 
the latter force is chiefly responsible for the curving of the flow lines upward as shown 
in figure 11 7 b . . . ’. The change in kinetic head due to a velocity perturbation q’ is 
comparable to the change in gravitational head over a distance h if h - qq’/g. Then 
for the flame considered by Lewis & von Elbe it is easily confirmed that gravity plays 
a minor role. 
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tXI 
FIGURE 4. Axisymmetric hydrodynamic tip drawn for E = tan lo", ( E / x )  &/q = 0.1. 

2.2. Axis ymmetric case 

The discussion for the axisymmetric problem proceeds along very similar lines. On 
the unburnt side of the flame 

(2.20a, b )  
1 1 

qs = -[ 1+€u1(5)+ . . . I ,  py = -+(()7jl+ ..., 
& 

F = --€U,(()+ ..., F, = - E +  .... (2.20c, d )  

The problem on the burnt side is described by 

w1 =- 8 ( v =  -€(, ( < 0 ) ,  (2.21 c) 

p1 = u,((), = -u,((), o1 = 0 (v = 0, ( > 0). (2.21d,e, f )  

A line of sources whose strength is linear in ( distributed along the negative (-axis 
defines a potential solution for which ,ul is O( l) ,  and w1 is O( 1)  near the flame surface, 
O ( E )  elsewhere. This is 

Tf 

(2.22) 

I n  contrast with the plane solution, most of the streamline realignment occurs in a 
small angular neighbourhood of the flame surface (figure 4). A shear flow can be added, 
just as for the plane case, but the singularities that  this introduces make such an 
addition unattractive. 

r, 
T f  

,ul = 0, w1 = +e tan (&b) -. 

2.3. Flame in a non-uniform eflux 

If the efflux from the burner part is not uniform, similar analyses are possible in 
principle, but the non-trivial shape of the flame front can complicate the exterior 
problem. However, it is worth noting that this shape can always be calculated without 
dificulty. Since the interior flow is unaffected to  leading order by the presence of the 
flame, and is, moreover, parallel to order O(e) ,  the flame-speed condition is 

Consider, for example, a Poiseuille flow for which 

12-2 
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Integration of (2.23) then yields the shape of a flared cone, 
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1 F; 
3 a2 

5 = - F  +--. 0 (2.24) 

The idea of calculating the flame shape by assuming that the flow is unaffected by 
the presence of the flame is an old one (Lewis & von Elbe 1961), but can only be 
justified within the context of slender-flame theory. 

3. Structure of the tip 
It is not clear that  the singular nature of the, hydrodynamic solution near the tip 

can be resolved within the limitations of a hydrodynamic theory. On any lengthscale 
that is large compared with the preheat-zone thickness, the flame speed is unaffected 
by the flame configuration and always assumes a value of unity. Thus a smooth tip 
can only exist if a flame configuration exists for which the interior gas speed near 
the tip is reduced from O(E-') values to 0(1) values, and, indeed, q2 a t  the tip itself 
must equal 1 .  We shall proceed on the assumption that such a resolution is not 
possible, or alternatively that it takes place on a length scale that is o(1) (i.e. much 
smaller than the preheat-zone thickness) so that is superseded by a resolution through 
the structure equations. It follows that, in examining the tip structure, upstream 
boundary conditions must be chosen that are compatible with the refraction and 
associated structure of figure 1, symmetry about the x-axis, and a uniform flow 
between the refraction and this axis. 

The structure equations are simplified by the slender-flame approximation, of 
course. Define 

and consider the limit U +a. Then the system ( 1 . 1 )  reduces to 

qz = U G ,  x =  uz, p = uzp, 

1 
L 

p(Q*V)Y = -VyY-BYe-e/T, 

p ( q * V ) T  = VqT+BYe-B/T, 

V*(pq)=O,  p T = T , ,  

~ ( Q * v ) G  = - - + + r V t g ,  
aF 
a% o = Vlp, 

(3.1a, b,c)  

(3.2a) 

(3.2b) 

(3.2c, d )  

(3.2e,f) 

where 

There is a corresponding equation for $. 
An important advantage of this system is that it is parabolic. In  the present 

context, moreover, the simplification goes much deeper, as we shall see. 
The jump conditions at the flame sheet or reaction zone also simplify, chiefly 

because the normal is orthogonal to the x-axis in the limit. Thus, for plane or 
axisymmetric tips, 

(3.3a, b) 

(3.3c, d ,  e )  
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where y is the radial distance in the axisymmetric case. It should be noted that qn 
may not be replaced by qy. 

Initial conditions for this parabolic system are defined by (1.19) and (1.20), which 
are, strictly speaking, only applicable as z +-a. However, if the flame sheet is 
located a t  y = h, when z = 0, they may be applied a t  this finite location provided 
that h, is sufficiently large. Then, replacing n by y - h, we have 

$ = O ,  T = T , + Y , ,  ) (3 .4a,  b )  

(3.4c, d ,  e )  

Consistent wth (3 .4)  and the hydrodynamic analysis, conditions at infinity are 

(3.6a, b) - q p l ,  p o  as y-too. 

qx = 1 ,  p =  0, 

The momentum equations (3.2e, f )  may be eliminated by noting that 

(3.7a, b) - 

and then, exterior to  the flame sheet, 

ap i a 
aZ ay -+,-(pqyyv) = 0 (v = 0, plane flow; v = 1 ,  axisymmetric flow); (3 .8a)  

(3.86) 

The density may be eliminated from these equations using Charles’s Law. Moreover, 
they imply a simple relation between qy and the heat flux, so that the number of 
dependent variables may be reduced t o  two, namely T and $. Thus writing (3.8b) 
in conservation form yields 

and, since the quantities in square brackets vanish identically, we have 

1 aT G(z )  q =--+- 
T,ay  YV ’ 

(3.10) 

where G is an arbitrary function. On the cold side of the flame, the symmetry 
condition at y = 0 implies that  G vanishes identically, so that 

1 aT 
qy = --. 

T, aY 

I n  particular, a t  the flame or reaction sheet 

(3.11) 
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Since qy is continuous a t  the flame sheet and aT/ay  vanishes on its hot side, it follows 

(3.12) 
that there 

where the location of the flame sheet is given by 

y = h(Z). (3.13) 

Using these relations i t  is only necessary to  solve equations for q5 and T on the cold 
side of the flame, and an equation for q5 on the hot side. 

3.1. Flame length 

A complete description of the combustion field is only possible by recourse to the 
computer, but certain geometrical characceristics of the flame may be deduced 
analytically. Consider plane flames. 

A stream function may be defined by 

with Tf pb = - 
Tf+y,’ 

where $ vanishes at y = 0. Thus, on the hot side of the flame, 

$-$b(%) = y - h ( * ) .  

Here $b = $(Z, h ( Z ) )  is the value of $ at the flame sheet and 

whence 

(3.14a, b )  

(3.15) 

(3.16) 

$bO is the value of $b at x = 0 and may be calculated from the initial conditions (3.5). 
Thus 

which, upon neglecting terms that are o( 1 )  as ho -too, is 

$bo = -[ho+ln T f + &  Tf ’1 T,+ r, + o( 1 ) . (3.17) 

Then, from (3.16), 

’f(X) +o ( l ) .  (3.18) Yfho Tf+q Tf 
$b = -+-In-- 

Tf Tf % + Y E  
At the tip of the flame where Z = Xt, both $b and h vanish, so that 

- 

h -Z --f T+Y,  ln-+rdx[exp Tf q5f 

5 q+Y, 0 t -  (3.19) 

The right-hand side of the formula represents a ‘length deficit’ for the flame - it  is 
a measure of the blunting of the uniform wedge because of the structure. I n  the case 
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of unit Lewis number ( A  = 0) ,  for which $ identically vanishes, this deficit is 

T Y  Tf -~ f +  

r, T,+y,' 

The deficit is increased (i.e. the flame is blunter) if $f is positive. This can be 
understood by recognizing that when $f is positive the flame temperature exceeds 
that of the adiabatic flame and there is a corresponding tendency for the flame speed 
(the component of velocity normal to the flame sheet) to increase. 

An analogous treatment is possible for the axisymmetric case, which leads, in the 
case of h = 0, to an expression involving the cross-sectional area of the flame, rather 
than its length. However, unlike the plane flame, for which deviations from a wedge 
shape in the far field are exponentially small, for the axisymmetric flame such 
deviations are algebraic (and non-integrable - see the appendix) and these make an 
interepretation of the result rather obscure, so that the discussion is omitted. 

3.2. Simitarity solution at the tip 

It was noted in an earlier paper (Buckmaster 1979) that, in problems such as the 
present, a similarity solution valid near the intersection of flame and axis can provide 
useful local information about the combustion field. Here it is possible to calculate 
explicitly the local flame curvature. This curvature is responsible for the enhanced 
flame speed that is necessarily associated with the tip of a closed flame. 

I n  this connection it is appropriate to  define new independent variables by 

(3.20a, b )  

and seek solutions on the hot side of the flame in the form 

T-T,+Y,+s;f(y)+ ..., $ - &  (3.21 a ,  b )  

where the location of the flame sheet is defined by 

h - CS;. (3.22) 

Consider first the axisymmetric problem. The equation for T yields an equation for 

f, namely I+(---'I)f+l= 1 1  0. 

7 2  
(3.23) 

Since f represents the perturbation of the temperature from the value Tf + y f ,  this 
is a linear equation. Symmetry imposes the condition 

P(0) = 0, (3.24) 

and the flame-sheet conditions require 

Solutions may be expressed as a contour integral 

(4t- l)i 
f = dteVzt- $ ' Q 

(3.25a, b)  

(3.26) 

where % is any contour in the region of analyticity for which the quantity 
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vanishes at both ends. Adopting the principal values for the two multiple-valued 
functions, one allowable contour encloses the branch cut, and a second emerges from 
the branch point a t  t = + and passes to infinity along the negative real axis. In  this 
way two independent solutions may be constructed, namely 

( 3 . 2 7 ~ )  

(3.27 b)  

fi is not analytic a t  7 = 0 and so is not acceptable in the physical problem, and 

f = c2f2 (3.28) 

for some constant c2. Since fz is positive at the origin ( f2(0) = K), but becomes negative 
for sufficiently large values of 7 (f2+- co as 7+00), there is clearly a value of 7 for 
which f vanishes. This defines C (cf. ( 3 . 2 5 ~ ) )  and therefore the radius iC2 of the tip, 
and numerical computation leads to the estimate C x 2.5. It is noteworthy that the 
result is independent of the Lewis number. 

In  the case of plane tips, the equation for f is 

f "-bf ' + g  f = 0. 

One solution is linear and must be discarded because of the condition (3.24). Thus 

(3.29) 

(3.30) 

for some constant c3. The quantity in brackets is negative a t  7 = 0 and approaches 
positive infinity as q+co, so that there is a value of 7 for which f vanishes and this 
defines C( x 1.85). 

4. Numerical computations 
The numerical method for the computation of the shape of flame tips described 

by the model equations (3.4), (3.5) and (3.8) is based on the weak-solution approach 
to moving-boundary problems. In  this method the governing equations are cast into 
conservation form so that the Rankine-Hugoniot conditions at a discontinuity are 
precisely the jump conditions a t  the flame front derived earlier (3.3). This being done, 
the equations may then be solved numerically throughout a fixed region, with the 
flame front in its interior, without explicitly applying any boundary conditions at 
the front. This technique has been widely used in moving-boundary problems such 
as the Stefan problem of heat conduction with change of phase (Kamenomostskaja 
1961 ; Atthey 1974), the solidification of binary alloys (Crowley & Ockendon 1979) 
and electrochemical machining (Crowley 1979). For further discussion of the applic- 
ation of weak-solution techniques to free and moving boundary problems, the reader 
is referred to Elliott & Ockendon (1982). 

Turning to the model flame-tip equations (3.8), (3.8a,c) may be immediately 
written in conservative form as 
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For (3.8b) it is necessary to modify the equation in order that (3.3 b )  may be realized. 
This may be achieved by writing (3.8b) as 

where the Heaviside function H is defined by 

The corresponding jump conditions a t  the flame front y = h(z) where T = Tp + & are 
then 

(4.4) 

Together with Charles Law, these yield, as required, 

[PI = 0 = [TI = [$I, 

Moreover, direct integration of the temperature equation, using the conditions a t  
y = 0,  gives (cf. (3.10)), 

1 aT Y f  h ”  $lh 
qy =--+(1-H(Tp+&-T))-(-) Tp a Y  

T , Y  exp 2 ( T , + & ) 2 ’  
(4.9) 

Thus the conservation form of the equations is equivalent to (3.8) together with the 
jump conditions (3.3), and provides an alternative formulation of the problem. 

For numerical solution, the expressions for qv and Tare substituted into the density 
equation to yield 

where 

(4.10) 

(4.1 1 )  

(4.12) 

The form of K ( p )  on the hot side of the flame is largely arbitrary, since p is constant 
in this region, but i t  is found that setting K ( p )  = 0 on the hot side is best 
computationally, since inevitably ap/ay does not numerically vanish identically. 
Correspondingly, the $-equation is written 

a a a a$ a 
az - (Y”P$) +ay (Y”PPqy $1 = sy( y ” ~ )  + h - (yvK(p)  aY 
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To obtain the results shown in the figures, an explicit finite-difference scheme is used 
to solve for the density, and an implicit Crank-Nicolson discretization is used for the 
$-equation. A new value of $ I h  is than obtained, and iteration is continued on $ and 
qy until the values are self-consistent. Further discussion of the numerical scheme for 
this problem may be found in Crowley (1982), and for the related flame-tip problem 
in which the constant-density approximation is made, that  is flame tips without fluid 
mechanics, in Crowley (1981). 

Results 
The formulation reveals that  (T-Tf)/Y,, $/A&,  p,  qy and h depend on only two 
parameters, namely 

(4.13) 

The second of these is the ratio of the burnt-gas temperature to that of the fresh 
mixture, and is a measure of the importance of variable-density effects. In  the limit 
Tb/Tf+ 1 ,  Q fixed, the problem reduces to the constant-density model treated by 
Buckmaster (1979). For reasons that are discussed in the appendix, accurate results 
for axisymmetric tips require a very large initial value for h, so that  we have only 
made calculations for plane tips (solutions for axisymmetric tips for the constant- 
density model are given by Buckmaster (1979) ; the identification in that paper of a 
limiting solution valid as Q+- 00 is incorrect, as the present appendix makes clear). 
The flame shapes so obtained are drawn in figures 5-7 for different values of Q and 
Tb/Tf; these show how the incorporation of variable density has a blunting effect on 
the tip. Indeed, the theoretical length deficits predicted by (3.19) when h = 0 are 1, 
1.65 and 2.15 respectively for Tb/Tf = 1, 3 or 6, and these compare favourably with 
the numerical values. Streamline patterns for Q = 0, Tb/Tf = 6 are shown in figure 8. 

Whenever the computed flame tip is bulbous in shape there is a possibility of 
negative flame speeds in which the gas velocity is directed from the burnt side of the 
flame to the unburnt side. This is not obviously unphysical, since reactants can reach 
the flame sheet, as required, by diffusion in the y-direction. Nevertheless, in the 
context of the constant-density model, Buckmaster (1979) proposed to terminate the 
solution at the point where the flame speed first vanishes, since such solutions 
correspond to  the open tips seen for some mixtures. However, no evidence has since 
emerged which justifies this choice. In  the present situation the gas heating causes 
the streamlines to diverge, and this is sufficient, for all the solutions shown here, 
to  maintain a positive flame speed everywhere. This will not always be the case. If 
h is a large negative quantity and the density ratio across the flame is not too large, 
negative flame speeds will occur; and a strong temperature dependence of the 
transport coefficients can lead to negative flame speeds for some of the choices of h 
and Tb/Tf considered here. 

These results make i t  clear that  the weak-formulation technique is very effective 
in the treatment of the parabolic free-boundary problem. Unfortunately there is little 
hope that the technique can be extended to the elliptic problem that arises for modest 
values of U .  

This work was supported by the National Science Foundation, NSF ENG 78-28086, 
and by the Army Research Office. 
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FIGURE 5. Flame-tip shapes for various values of a, Tb/llf = 1. 

FIGURE 6. Flame-tip shapes for various values of a, Tb/Tf = 3. 

FIGURE 7. Flame-tip shapes for various values of 52, Tb/Tf = 6. 
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$ = 1 6  12 8 4 

x 
FIQURE 8. Streamlines drawn for Sz = 0, Tb/Tp = 6. 

Appendix. Far-field description of the axisymmetric tip 
In  the case of a plane flame approaching a line of symmetry, the presence of the 

line is first felt when the fringes of the preheat zone intercept it. Since this first 
tendency of the classical one-dimensional deflagration wave to violate the constraints 
of the problem is only exponentially small, perturbations in the far field (x+- 00) 

have corresponding magnitude. The initial conditions (3.4 and 3.5) are therefore 
entirely adequate insofar as the numerical computation is concerned, proved that h, 
is moderately large (say 5 ) .  For the axisymmetric problem the corresponding 
perturbations are algebraic, since the one-dimensional structure omits the diffusion 
term ( l /y )  (aT/ay), amongst others. Consequently, although the initial conditions 
(3.4) and (3.5) are appropriate in principle if h, is large enough, in practice they are 
rather unsatisfactory, and this motivates an examination of the perturbation. The 
results are of interest in their own right, reflecting as they do the first effects of 
curvature on the flame in a situation in which the fluid mechanics is realistically 
accounted for. 

Consider first the equation for T ,  which is 

where 

P We shall assume that, as z+- co, 

for some p, so that on the cold side of the flame sheet 

$f - 
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g = y+%-p(Z) = 0, (A 3) 

where p ( ~ )  = yln( -z)+  .... (A 4) 

359 

In addition, we shall assume that the position of the flame is defined by 

It is convenient to use g and x as independent variables, whence 

(A 5 )  
a2T 1 -+fp'-----. aT T 3T T,aT 

;%$($'=F+[-z+p a[ T T aZ 

Consistent with this, 

whence, correct to O(l /Z) ,  

T - Tf+Yfec+O 

(A 6) 
1 a2T U, ec + p'TecYf --+- - zE ;(:2'- T tip x(T,+U,eC) (T,+U,e5)2 ' 

The terms that contain T may be written as exact differentials, whence, integrating 
once (using T-t T, as 6-t- CQ), 

(A 7 )  
Integrating once again, 

which may be represented by 

The heat-flux condition (A 2 b )  at the flame sheet then implies that 

PU, = (q+ &)In-- T,+y, %p'(%)U,. 
Wf+U,)' T, 

The equation for $ is 

whence 

correct to O(l /x ) .  It follows that on the hot side of the flame 

P $ -2 ,  
so that the gradient on the cold side is 

Noting that 
+..., 1 w-f) 

x(T,+ qec)  
p+ppy = I+: 
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we have, on the cold side, 

and since, to leading order, 

the integration of (A 15) implies 

+ = -hyecYf, 

Equations (A 9 )  and (A 18) together define /3 and ~ p ' ,  whence 

dtlnt 

This is positive when h is negative, so that the flame temperature is less than the 
adiabatic value (i.e. +f < 0) when the Lewis number is less than 1 ( A  < 0). In  addition, 

If h is greater than some critical value A,, this is positive, and in plane section the 
flame is slightly concave when viewed from the hot side. For h < A, it  is convex. SZ, 
is a function of the single parameter Tb/Tf, the density ratio across the flame, and 
this is plotted in figure 9. As Tb/Tf+l we have h,+-2T2/Y, ,  the critical Lewis 
number for a constant-density flame model. This limiting critical value plays a 
universal role in the behaviour of weakly stretched flames (Buckmaster 1982). 
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